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Abstract 

This paper deals with an approach to Automatic Language 
Identification based on rhythmic modeling. Beside phonetics 
and phonotactics, rhythm is actually one of the most promising 
features to be considered for language identification, but 
significant problems are unresolved for its modeling. In this 
paper, an algorithm of rhythm extraction is described. 
Experiments are performed on  read speech for 5 European 
languages. They show that salient features may be 
automatically extracted and efficiently modeled from the raw 
signal: a Gaussian mixture modeling of the extracted features 
results in a 81 % percent of correct language identification for 
the 5 languages, using 20 s duration utterances. 

1. Introduction 

Automatic Language Identification emerged during the last 
ten years. The major stakes may be divided in two areas: 
Multilingual Man-Computer Interfaces (Interactive 
Information Terminal, Speech dictation, etc.) and Computer-
Assisted Communication (Emergency Service, etc.). 

At present, the standard approach considers a phonetic 
modeling system as a front-end, and the resulting sequences 
of phonetic units are decoded according to language-specific 
statistical grammars [1]. Even if this approach reaches the 
best results, only marginal improvements have been 
performed since ’96, and it seems crucial not to underestimate 
the relevancy of alternative features present in the signal. 

Among the different levels of language description, 
prosodic features carry a substantial part of the language 
identity (Section 2). However, due to the numerous problems 
that arise when talking about automatic rhythm extraction, 
most of the previous experiments aiming at language 
identification with rhythm are based on hand-labeled data 
([2], [3], [4]). The approach presented here challenges the 
automatic extraction of rhythmic features in a fully 
unsupervised language-independent approach (Section 3). 
Based on a Vowel/Non-Vowel segmentation, it is 
subsequently exploited in a statistical rhythm modeling for 
automatic language identification (Section 4). Very promising 
results are obtained. Perspectives are explored in Section 5.  

2. Addressing rhythm definition 

2.1. The importance of rhythm 

Rhythm is a characteristic of language that may be eventfully 
critical in different activities related to language: 
 
• language acquisition 

According to the frame-content theory [5], the rhythm, and 
especially the CV pattern (the frame), is closely related to the 

closed-open alternation of the mouth during speech 
production. According to MacNeilage & Davis, this cycle is 
provided by the mandibular oscillation and it may be the first 
step in the evolution and acquisition of speech, followed by 
the rise of the capacity to produce a sequence of frames filled 
with different consonants and vowels (the content). Moreover, 
several experiments have shown that newborn children pay a 
great attention to syllabic patterns (see [6] for a short review). 

 
• language synthesis 

In speech synthesis the notion of rhythm is most often related 
to the distinction between stressed vs. unstressed units. This 
distinction is important for the comprehension of stress-timed 
languages. However, this binary distinction does not define 
the fine timing distinctions of fluent speech, and does not 
match with syllable-timed family of languages. 

 
• language identification 

Among others, Thymé-Gobbel and Hutchings point out the 
importance of rhythmic information in language identification 
systems [4]. With parameters related to rhythm and based on 
syllable timing, syllable duration, and descriptors of 
amplitude patterns, they have obtained promising results, and 
proved that mere prosodic cues can distinguish between some 
language pair with results comparable to some non-prosodic 
systems. 

Ramus et al. [7] show that newborn infants are sensitive 
to the rhythmic properties of languages. Other experiments 
based on a consonant/vowel segmentation of eight languages 
established that measured parameters might be able to classify 
languages according to rhythmic properties of languages [8]. 

2.2. Linguistic classes of rhythm 

Experiments reported here focus on 5 European languages 
(English, French, German, Italian and Spanish). According to 
the literature, French, Spanish and Italian have syllable-timed 
rhythm while English and German have stress-timed rhythm. 
These two categories emerged from the theory of isochrony 
introduced by Pike and developed by Abercrombie [9]. But 
more recent works, based on the measurement of the duration 
of inter-stress intervals in both stress-timed and syllable-timed 
languages provide an alternative framework in which these 
two binary categories are replaced by a continuum [10]. 
Rhythmic differences between languages are then mostly 
related to their syllable structure and the presence (or 
absence) of vowel reduction.  

2.3. Rhythmic units and patterns 

The different works in linguistics or psycholinguistics 
reported above and the subsequent controversies on the status 
of rhythm in world languages illustrate dramatically the 
difficulty to segment speech into correct rhythmic units. Even 



if correlates between speech signal and linguistic rhythm exist 
[8], reaching a relevant representation of it seems difficult. 
Another difficulty rises from the selection of an efficient 
modeling paradigm. At this moment, experiments based on 
neural networks show interesting trends [2], but the problem 
is far from being resolved. We propose a new approach, based 
on a Gaussian modeling of the different “rhythm units” 
automatically extracted from a pseudo rhythmic segmentation 
in the languages.   

3. Rhythmic segmentation 

Even if the existence of non-vocalic syllabic core is reported, 
most of the rhythmic patterns alternate Consonants and 
Vowels. Thus, automatic rhythm extraction necessitates a 
segmentation of speech according to Consonant/Vowel labels. 
To reach that point, we take advantage from an algorithm 
formerly used for model vowel systems in a language 
identification task [12]. The main features of this algorithm 
are reviewed hereunder. 

3.1. Speech segmentation 

In order to extract features related to the potential consonant 
cluster (number and duration of consonants), a statistical 
segmentation based on the "Forward-Backward Divergence" 
algorithm is applied. Interested readers are referred to [11] for 
a detailed study of the Forward Backward Divergence 
Algorithm. The algorithm results in a segmentation into short 
segments (bursts, but also transient parts of voiced sounds) 
and longer segments (steady parts of sounds). 

3.2. Vowel detection 

A segmental speech activity detection is performed to discard 
pauses (not related to rhythm) and the vowel detection 
algorithm locates sounds that match a vocalic structure via a 
spectral analysis of the signal [12]. It is applied in a language 
and speaker independent way without any manual adaptation 
phase. 

3.3. Rhythm and automatic segmentation 

The processing provides a segmentation of the speech signal 
in pause, non-vowel and vowel segments (see Figure 1). Due 
to the intrinsic properties of the algorithm (and especially the 
fact that transient and steady parts of a phoneme may be 
separated), it is somewhat incorrect to consider that this 
segmentation is exactly a Consonant/Vowel segmentation. 

However, it is undoubtedly correlated to the rhythmic 
structure of the speech sound, and in this paper we investigate 
the assumption that this correlation enables a statistical model 
to discriminate languages according to their rhythm structure. 

3.4. Rhythm modeling units: Pseudo-syllables 

Modeling rhythm implies to select suitable units. We saw in 
Section 2 that they vary among the languages and that their 
intrinsic supra-segmental nature is not trivial to model. 

The existence of syllables, even if this unit may not be the 
most salient in stress-timed languages, is confirmed in all the 
languages of the world. However, the segmentation of speech 
in syllables is typically a language-specific mechanism and 
thus no language independent algorithm can be derived, 
especially when syllable boundary occurs between consonants 
(e.g. in a CVC.CV occurrence as in the French word parmi)). 
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 Figure 1: Example of a Silence/Vowel/Non-vowel 
automatic segmentation. The speaker pronounces “Et 
la mer est très bonne”. Vertical lines are given by the 

segmentation algorithm. 

For these reasons, we introduce the notion of Pseudo-
Syllables (PS) derived from the most frequent syllable 
structure in the world, namely the CV structure ([13]). In our 
algorithm, the speech signal is parsed in patterns matching the 
structure: .CnV.  (with n an integer that may be zero). 
For example, the parsing of the sentence displayed in Figure 1 
results in the following sequence of 7 pseudo-syllables: 
(CCVV.CCV.CV.CCCV.CV.CCC). Then consecutive vowel 
segments are merged and clusters without vowels are 
discarded. So the example sequence becomes 
(CCV.CCV.CV.CCCV.CV). 

We are aware of the limits of such a basic rhythmic 
parsing, but it provides an attempt to model rhythm that may 
be subsequently improved. However, it has the considerable 
advantage that neither hand-labeled data nor extensive 
knowledge on the language rhythmic structure is required. 

4. Pseudo-syllabic modeling 

4.1. Corpus 

Experiments are performed on the MULTEXT multilingual 
corpus [14]. This database contains recordings from five 
European languages (French, English, Italian, German and 
Spanish), pronounced by 50 different speakers (5 male and 5 
female per language). Data consist of read passages of about 
five sentences extracted from the EUROM1 speech corpus. 
They are augmented with the raw pitch contour and additional 
prosodic information (not considered here). A limitation is 
that the same texts are produced on average by 3.75 speakers, 
resulting in a possible partial text dependency of the models. 
Table 1 shows the duration of the corpus for each language. 
 
 
 
 



Table 1: The MULTEXT Corpus (from Campione & 
Véronis [14]) 

Language
Passages 

per 
speaker

Total 
duration 
(min.)

Average 
duration per 
passage (s)

English 15 44 17.6 
French 10 36 21.9 
German 20 73 21.9 
Italian 15 54 21.7 

Spanish 15 52 20.9 

4.2. Pseudo-syllables description 

A pseudo-syllable is described as a sequence of segments 
characterized by their duration and their binary category 
(Consonant or Vowel). This way, each pseudo-syllable is 
described by a variable length matrix. For example, a .CCV. 
pseudo-syllable will give: 






=

121
..

VCC
CCV

ddd
VCC

P  (1) 

 
where C and V are binary labels and dX is the 

duration of the segment X. 
This variable length description is the most accurate, but 

it is not appropriate to a Gaussian Mixture Modeling (GMM).  
For this reason, another description resulting in a constant 
length description for each pseudo-syllable has been derived. 
For each pseudo-syllable, three parameters are computed, 
corresponding respectively with the total consonant cluster 
duration, the total vowel duration and the complexity of the 
consonantal cluster. With the same .CCV. example, the 
description is then : 

( ){ }CVcCCCV NdddP 21.. +=´ ( ){ }CVcCCCV NdddP 21.. +=´
 

(2) 

where NC is the number of segments in the 
consonantal cluster (here, NC = 2). 

Even if this description is clearly non-optimal since the 
individual information on the consonant segments is loosed, it 
takes a part of the complexity of the consonant cluster into 
account. 

4.3. GMM Modeling 

GMM are used to model the pseudo-syllables which are 
represented in the three dimensional space described in the 
previous section. They are estimated using the EM algorithm 
initialized with the k-means algorithm. 

Since the amount of data is very limited (especially in 
terms of number of speakers), a bootstrapping is performed 
(i.e. nine of the ten speakers are used for the training while the 
tenth one is classified according to the maximum likelihood 
criterion). The learning-testing procedure is iterated for each 
speaker of the corpus. 

4.4. Language Identification 

Language identification experiments are performed on the 
five languages of the MULTEXT corpus. Each passage of 
about 20 seconds is tested individually using the 
bootstrapping method described above. Three parameters are 
investigated in the language identification task. 

4.4.1. Influence of the GMM topology 

This first factor is the number NGauss of Gaussian components 
in the GMM (see Figure 2).  
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Figure 2: Evaluation of the influence of the number of 
Gaussian components in each model. This histogram 
displays mean values computed among 4 experiments. 

It is worthy of note that with no more that 2 Gaussian 
components, an identification rate of 60 % is performed, 
underlying that the rhythmic modeling is relevant. The best 
average results (71 % correct) are reached with NGauss = 12, 
and a decrease is observed for more complex models. A more 
careful study of the results (not detailed here) has shown a 
great variation among the results obtained with these complex 
models. Several models reach very good performances (up to 
81 % of correct identification), but the limited amount of data 
result in a significant instability. 

4.4.2. Influence of the complexity of the consonant cluster 

The second factor is NCmax, the maximum number of segments 
considered in a consonant cluster: if a very long sequence of 
consonant segments is detected in a waveform, it may result 
from an omission of the vowel detection algorithm. In that 
case the cluster does not represent correctly the rhythmic of 
the language. 
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Figure 3: Evaluation of the influence of the maximum 
number of consonant segments considered in a 

consonant cluster. This histogram displays mean 
values computed among 4 experiments. 

Experiments evaluate the influence of a maximum limit of 
complexity for the consonantal clusters. Figure 3 shows that 
the performances reach a flat level from NCmax equals 14 to 20 



(clusters longer than 20 segments are very uncommon). It 
demonstrates that, even if over-segmentation results from the 
algorithm, the resulting segmentation is relevant and catches 
language rhythm variation. 

4.4.3. Influence of the test duration 

Table 2 presents the results of correct identification with a 
variation of the duration of the speech files taking into 
account. The results concern the NGauss = 15 and NCmax = 14  
model. With only 5s of speech file, the results are much 
greater than chance. It shows that even with short excerpts, 
the rhythmic structure may be correctly modeled with GMM. 

Table 2: Evolution of correct identification rates (in 
percent) in function of test duration (in seconds) 

5 10 15 20 

EN 41 55 54 59 
FR 72 80 82 83 
GE 59 68 74 80 
IT 34 41 49 55 
SP 72 81 86 93 

Mean 56 65 69 74 

4.4.4. Matrix of confusion 

The confusion matrix resulting from an experiment with 
NGauss = 18, NCmax = 12 and 20s test duration is shown in 
Table 3. Several results emerge from this experiment: 

First, it proves that the pseudo-syllable modeling is able 
to take a significant part of the rhythmic structure of 
languages into consideration. The worst identification rate is 
for Italian (53 %), and even if it is far from the results reached 
for the other languages (ranging from 81 % for English to 100 
% for Spanish), it is significantly different from chance. 

Table 3: Matrix of confusion (in percent). The average 
correct identification rate is 81 %. 

EN FR GE IT SP 

EN 81 1 9 9 1 
FR - 84 7 1 8 
GE 9 - 87 4 - 
IT 18 - 4 53 25 
SP - - - - 100 

 

5. Conclusion and perspectives 

We propose one of the first approaches dedicated to rhythm 
language identification that is tested on a task more complex 
than paired language comparisons. The experiments done 
with 5 languages produce relatively good results (81% correct 
identification rate for 20-second utterances), that can be more 
easily compared to traditional non-prosodic systems.  It is 
interesting to point out that the pseudo-syllable modeling 
manages to identify languages that belong to the same 
rhythmic family (e. g. syllable-timed rhythm for French, 
Italian and Spanish), showing that the temporal structure of 
the pseudo-syllables is quite language-specific. Problems 
reported with Italian and some English-German distinctions 

are arguments for testing more features, more related to stress 
and tone (parameters derived from energy and F0). However, 
the limited amount of data, emphasized by the instability of 
the more complex Gaussian models, shows that it may be 
necessary to continue experiments with bigger corpora. 
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